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Abstract

	 Streamflow forecasting is an important factor in water resources planning and management. 
In this study Feed Forward Artificial Neural Network (FFANN) was used for monthly streamflow 
forecasting. Three scenarios were considered for modeling. Principal Component Analysis (PCA) 
is used for reducing the model architecture complexity and input data reduction. Twelve statistical 
criteria were used to evaluate the model performance. Also for quantifying the accuracy of forecast, 
uncertainty analysis was conducted using Monte Carlo simulation. Results indicated that the model 
in general is capable to forecast monthly streamflow time series satisfactorily. However the model 
is underestimated in extreme values. Also, uncertainty analysis shows that the model forecasted 
monthly streamflow time series properly in the first two scenarios while in the third scenario most 
of the forecasted values lie out of the upper confidence interval.
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Introduction

	 Streamflow forecasting is a key component in 
sustained development and based on environmental 
issues. It has been an important subject for the 
researchers from the middle of the 20th century. 
Different approaches such as regression (Sun et 
al. 2014; Rehman and Saleem, 2014, Dehghani et 
al. 2014), conceptual (Jain and Srinivasulu, 2006; 
Xu et al. 1996) and intelligent (He et al. 2014; Liu 
et al. 2014; Sudheer et al. 2014) models are used 
for streamflow forecasting. Artificial intelligence 
models, especially Artificial Neural Networks (ANNs) 
have been applied for streamflow forecasting 
in several researches. Artificial Neural Network 
(ANN) is a nonlinear black-box statistical approach 
(Kalteh, 2013). ANNs are suitable for dealing with 
the intrinsic characteristics commonly present in 
hydrological processes (Fajardo Toro, 2013). ANN 
is appropriate for the problems which the input is 
high dimensional, data are possibly noisy and not 
important to know the weights. Literatures in the last 
two decades show a high interest in using ANN for 

hydrological processes, forecasting and different 
ANN architectures were used for this purpose. 
Most studies have been done by feedforward error 
backpropagation (Karunanithi et al., 1994; Kisi, 
2004). The standard backpropagation algorithm 
(SBPA) has some problems including very low 
speed training convergence and easy entrapment 
in a local minimum (Haykin, 1999). The Levenberg-
Marquite algorithm proposed as a training function 
to overcome these problems.

	 One of the problems in ANN planning is 
presence of the complex structures which lead to 
networks with heavy architecture. In this regard, 
Coulibaly et al. (2000) utilized Stop Training 
Algorithm (STA) to solve this problem. It is possible 
to find several effective factors which cause networks 
with simple architecture. Input selection is a crucial 
step in ANN implementation. The lack of pertinent 
input impairs the network application to map the input 
into a close estimate of the observed streamflow. 
If the number of weights in ANNs is more than of 
samples in the training of ANNs to some extent, “over 
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fitting” may be caused (Haykin, 1999). In the case of 
a high number of input variables, the probability of 
correlation between the input variables increase and 
ANN hardly can find the optimized models. Therefore, 
if possible, it recommends reducing input variables 
even though this causes some of the information 
omitted. Principal Component Analysis (PCA) is a 
proper method for data reduction (Dehghani et al. 
2014; Noori et al. 2011). PCA has been used widely 
in different environmental issues.

	 Forecasting is associated with uncertainty. 
It means that the forecasted values will not be 
happen exactly all the time and they oscillate around 
the predicted values. So investigating the uncertainty 
associated with the forecasted values is an important 
issue in environmental processes forecasting. 
Different methods were used for uncertainty analysis 
in the past decades (Dehghani et al. 2014; Zhao et 
al. 2011; Viola et al. 2009). Monte Carlo simulation 
is one of the most popular methods in uncertainty 
analysis. Uncertainty analysis and assigning 
confidence intervals enable the water resources 
decision makers to have a better understanding of 
water resources in early future and make decisions 
based on this information. 

	 In this paper by considering the above 
explanation, monthly streamflow forecasted via ANN. 
Also the Monte Carlo simulation method is used to 
investigate the uncertainty of forecasted values. In 
sections 2 and 3, the study area and methodology 
are described, respectively. Model performance 
and discussions are presented in section 4 and the 
conclusions are drawn in section 5.

Study area and data
	 The Great Karun Basin is located in 
southwest of Iran (Fig. 1). The basin covers an 
area of 67112 km2 at the mouth of the Persian 
Gulf. This basin produces over 25% of total surface 
water resources in Iran and significantly affects the 
agricultural, social and environmental aspects of 
human life in this region.

	 Based on the high surface water potential 
in the basin that supplies water to various users 
and generates hydropower, hydrologic studies and 
streamflow forecasting are vital to efficient water 
planning and management. This study focuses 

on Dez River subbasin within the Great Karun. 
Fig. 2 shows the study area and the hydrometric 
station network in the selected area. The reason 
for selecting the tributaries of the Dez network was 
because the data at some downstream stations may 
have been affected by upstream water withdrawals.  
However, water use is negligible in the tributary 
rivers. As a result, part of the Dez river system up to 
the Sepiddasht hydrometric station was designated 
as the study area. 

	 A total of seven hydrometric stations were 
studied in this research. Referring to Fig. 2, the 
stations are Rahimabad, Dorudtire, Sepiddasht, 
Chamchit, Moruk, Daretakht and Dorudmarbere. All 
the stations have data from 1955 to 2009 for a total 
of 648 months streamflow data. Table 1 represents 
the monthly streamflow statistics for all hydrometric 
stations. The flow coefficient of variation oscillates 
between 1 and 1.95. This is a typical characteristic 
of streamflow in basins of Mediterranean climate that 
makes the forecast a challenging task.

Methodology
Artificial neural networks	
	 ANN customary architecture is composed of 
three layers of neurons: input layer, hidden layer and 
output layer (Haykin, 1999). A neuron response is 
based on the weighted sum of all its inputs according 
to an activation function. A feed-forward network was 
adopted for this study since feed-forward ANN has 
been shown to have a computational superiority in 
comparison to other paradigms (Hornik et al., 1989). 
The network was trained by the back-propagation 
algorithm through the split-validation procedure. 
Available data was divided into three sets: a training 
set, a validation set, and a test set. The training set 
is used to fit ANN model weights, the validation to 
select the model variant that provides the best level 
of generalization, and the test set is used to evaluate 
the chosen model against the remaining data. The 
number of neurons between 2 to 6 was chosen by 
trial and error. All input and output variables were 
standardized to [0.1, 0.9] scale as follows (Rajurkar 
et al., 2004):

	
1.08.0

minmax

min +







−
−

=
XX

XXX n

	  ...(1)	
 



896Dehghani et al., Curr. World Environ.,  Vol. 9(3), 894-902 (2014)

	 where X is input variable, Xmin and Xmax are 
the minimum and maximum values of input variable 
and Xn is the standard value.

	 The total number of weights to be 
determined in a neural network is,  for one 
hidden layer. This essentially accounts for all the 
connections between neurons in the layers. The 
number of neurons in the hidden layers increases the 
amounts of connections and weights to be fitted. This 
number cannot be increased without limit because 
one may reach a situation where the number of the 
connections to be fitted is larger than the number 
of the data pairs available for training. Although 
the neural network can still be trained, the case is 
mathematically undetermined. Mathematically, it is 
not possible to determine more fitting parameters 
than the available data points.

	 In this study a model based on a feedforward 
neural network with a single hidden layer is used. The 
back propagation (BP) algorithm is used to train the 
network. The BP algorithm is essentially a gradient 
descent technique that minimizes the network error 
function (Haykin, 1999).

Principal Component Analysis
	 Principal Component Analysis (PCA) is 
a method to identify the pattern in the data. This is 
a powerful tool to reduce the high dimensionality 

of data, especially when the datasets are highly 
correlated. Input variables are changed into PCs that 
are independent i.e. the information of input variables 
are presented with minimum losses in PCs (Helena 
et al., 2000; Noori et al., 2011). PCs specified by the 
equation below.

	 pipiii XaXaXaZ +++= .....2211 	
...(2)

	 Where Zi represents PCs, ai is related 
eigen vector and Xi are also input variables. This 
information achieved by solving equation (3) 
(Johanson and Wichern, 1982).

	
0=− λIR

 	 ...(3)

	 Where, I is unit matrix, R is variance-
covariance matrix and  is eigen value. By these 
eigen values, we can achieve the eigen vectors. . 
Details of the method are presented by, for example, 
Camdevyren et al. (2005), Noori et al. (2011), Helena 
et al. (2000), Dehghani et al. (2014).

Model evaluation
	 As there is no single evaluation criterion, it 
is important to apply a multi-criteria assessment of 
ANN skill (Dawson et al., 2002; Kumar et al., 2005). 

Table. 2: Scenarios and input ariables

S. No	T arget station	I nput		

1	 Dorudtire	 Rahimabab, Moruk
2	 Sepiddasht	 Rahimabad, Moruk, 
		  Dorudtire, Dorudmarbere, 
		  Daretakht,Chamchit	
3	 Sepiddasht	 PC

Table. 1: Monthly streamflow statistics at studied hydrometric stations

Statistics	R ahimabad	 Moruk	D orodtire	D aretakht	D orodmarbere	Chamchit	Sepiddasht

Max (CMS)	 41.86	 53.70	 156.89	 82.16	 197.17	 76.57	 123.68
Min (CMS)	 0.01	 0.00	 0.37	 0.00	 0.74	 1.05	 2.00
Mean (CMS)	 5.37	 4.39	 15.45	 3.45	 9.21	 7.34	 18.60
standard deviation 	 5.38	 6.92	 19.86	 6.72	 13.07	 7.50	 19.26
(CMS)
coefficient of variation	1.00	 1.58	 1.28	 1.95	 1.42	 1.02	 1.04

Dawson et al. (2007) summarized some evaluation 
statistics and they may be calculated by Hydrotest, 
a web-based toolbox, on hydrotest website (http://
www.hydrotest.org.uk). We applied 12 criteria to 
evaluate the model performance. 

Uncertainty analysis
	 In order to determine the uncertainty in 
Streamflow forecast, ANN modeling procedure 
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was implemented in a Monte-Carlo framework as 
introduced by Marce et al. (2004). Monte-Carlo 
simulation involves repeated generation of random 
parameters from their probability distributions, and 
then computing the statistics of the output. In this 
research Bootstrapping was used for resampling. 
The input database randomly resampled without 
replacement 1000 times, maintaining the ratio 
between the calibration (training and validation) 
and test sets. The 95% confidence interval of 
estimation is reported here due to the fact that this 
confidence interval provides more information than 
other statistical values about the range of predictions 
associated with the model (Noori et al., 2010c) The 
95% confidence intervals are determined by finding 
the 2.5th and 97.5th percentiles of the constructed 
distribution (Noori et al., 2009).

Results and Discussion

	 For Streamflow forecasting, three scenarios 
were considered (table 2). In the first scenario, 
monthly streamflow forecasted using Rahimabad 
and Moruk streamflow as input. In the second 
scenario using all hydrometric stations upstream 
of Sepiddasht station, the streamflow forecasted in 
Sepiddasht station.

	 In the third scenario, PCA was applied to 
the inputs in the second scenario to reduce the high 
dimensionality of data. Results indicated that the first 
PC reproduces 84% of variance of data. So, the first 
PC was selected as the input in the third scenario.

	 For ANN modeling, streamflow time 
series divided into three parts. The last 120 months 
river discharge assigned for test, 100 months for 
validation and the rest of the data for training then the 
model applied to the time series. Figs. 3 to 5 shows 
the ANN modeling of streamflow in test phase. From 
these figures it can be obtained that the model had 
a suitable performance in the test phase especially 
for Dorudtire station. However the ANN model is 
underestimating especially in extreme values. 

	 The mean, minimum and maximum 
observed values and forecasted values in the test 
phase are presented in table 3 Results indicated 
that the model is underestimated in maximum and 
mean values while in minimum value the model is 
overestimated.

	  In general the model performed better at 
Dorudtire station. The model follows the observed 
time series pattern properly in all scenarios. This 

Table. 4: Statistical criteria corresponding to test phase of
monthly streamflow forecast in various scenarios

Scenario 	 MRE	 MARE	R 4MS4E 	R MSE	 ME	 MAE	 AME	R AE	 PI	CE	IO  AD	R
Number			   (cms)	 (cms)	 (cms)	 (cms)	 (cms)

1	 0.87	 0.93	 8.06	 5.9	 3.61	 4.53	 21	 0.56	 0.72	 0.75	 0.93	 0.92	
2	 0.11	 0.4	 29.64	 16.02	 -4	 8.3	 78.8	 0.55	 0.35	 0.41	 0.72	 0.7
3	 0.5	 0.75	 32.41	 17.84	 -3.1	 10.3	 81.2	 0.68	 0.19	 0.27	 0.52	 0.67

Table. 3: Monthly streamflow statistics of observed and forecasted time series in the test 
phase

		O  bserved			   Forecasted		
Scenario	 Maximum	 Minimum	 Mean	 Maximum	 Minimum	 Mean  
Number	 (cms)	 (cms)	 (cms)	 (cms)	 (cms)	 (cms)

1	 71.6	 0.4	 9.27	 50.6	 0.62	 12.88	
2				    52.28	 2.81	 15.43
3	 106.1	 2	 19.4	 31.31	 8.63	 16.26	
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is one of the most important factors in time series 
modeling. 

	 For more investigation, 12 statistical criteria 
are calculated for the test phase (table 4). The bold 
and italic values show better performance.

	 The first seven criteria are about modeling 
error estimation. Based on these criteria the model 

had the best performance at Dorudtire station.  For 
a perfect model these seven metrics would be zero. 
RAE comprises the total absolute error made relative 
to what the total absolute error would have been if the 
forecast had simply been the mean of the observed 
values (Dawson et al. 2007). RAE value is better in 
the first and second scenarios. The four remaining 
metrics, including R, IoAd, CE and PI have the best 
values for first scenario among the other scenarios. 

Fig. 1: Boundary of the Great Karun Basin Fig. 2: Boundary of the study area and location 
of hydrometric stations

Fig. 3: Observed and forecasted monthly streamflow time series in test phase at the first scenario
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R oscillates between 0.67 and 0.92 among different 
scenarios. However R is insensitive to additive and 
proportional differences between the observed and 
modelled datasets, so high values can be obtained, 
even if the modeled values are considerably different 

from the observed values in terms of magnitude 
and variability. So for better judgment, Nashe-
Sutcliffe coefficient (CE) is used which is sensitive 
to differences in the observed and modelled means 
and variances. PI is persistence index and is very 

Fig. 4: Observed and forecasted monthly streamflow time series in test phase at the second 
scenario

Fig. 6: Confidence intervals for Streamflow forecast at the first scenario

Fig. 5: Observed and forecasted monthly streamflow time series in test phase at the third 
scenario



900Dehghani et al., Curr. World Environ.,  Vol. 9(3), 894-902 (2014)

similar to CE. IoAd is used to calculate the index 
of agreement. In overall the model performance is 
appropriately acceptable in all scenarios. 

	 A practical way of quantifying the accuracy 
of the forecast is by estimating the confidence 
interval of prediction. The wider the interval, the 
smaller is the accuracy of the forecast and vice 
versa. The Monte Carlo simulation was conducted 
for setting upper and lower confidence bands for 
streamflow forecasting in different scenarios. Results 
of 95% confidence intervals are shown in figures 6 
to 8.

	 Results indicated that in the first scenario, 
all forecasted values lie within the confidence 
intervals. It can be conducted that ANN performed 
satisfactorily in forecasting monthly streamflow in 
the first scenario. Also, all the forecasted values in 
second scenario lie within the confidence intervals 
while in the third scenario a large number of 
forecasted values lie out of confidence intervals. 

75% of forecasted values in third scenario lie out 
of confidence intervals which show the model 
performed poorly in forecasting streanflow. Most of 
the forecasted values are out of upper bound which 
shows that the model is not capable to predict the 
upper band properly.

Conclusion

	 In this study by using ANN, monthly 
streamflow was forecasted in three scenarios in 
Karin basin in Iran. Also uncertainty analysis was 
conducted to predict the confidence intervals. 
Results indicated that the model is capable to 
forecast monthly streamflow satisfactorily although 
in some cases the model is over/underestimated. 
However there are some considerations. Base on the 
statistical criteria the model performed well in the first 
and second scenarios while the model performance 
is poor in the third scenario. It can be concluded 
that the model is sensitive to the quality of input 
and more information leads to better performance. 

Fig. 7: Confidence intervals for Streamflow forecast at the second scenario

Fig. 8: Confidence intervals for Streamflow forecast at the second scenario
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So by using PCs as input, the model will lose some 
information and the model performance will be 
worse than the other scenarios. In reverse, using 
PC(s) as input decreases the model complexity. The 
difference between first and second scenarios may 
due to the water withdrawal upstream of Seppiddasht 

hydrometric station. Beside the statistical criteria, 
uncertainty analysis provides a good evaluation 
of streamflow forecasting. Monte Carlo simulation 
which is used in this research is a powerful tool 
for uncertainty analysis and performed well in the 
confidence interval prediction.
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