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Abstract 
For a variety of industries, including agriculture, water resource management, 
and flood forecasting, accurate rainfall prediction is crucial. The purpose 
of this research work is to improve rainfall forecast system by employing 
the Long Short-Term Memory (LSTM) based system. The LSTM utilized in 
the aforementioned study made predictions by using meteorological input 
variables such as temperature, humidity, and rainfall. Numerous elements 
affect the LSTM network's performance, such as the kind and volume of data, 
the suitability of the model architecture, and the tuning of hyperparameters. 
The dataset used for model training spans from January 2015 to December 
2021 and includes rainfall data collected from the Zonal Agricultural Research 
Station (ZARS), Shenda Park, Kolhapur. Prior to model training, the input 
data undergoes rigorous preprocessing. This preprocessing involves 
data correction, achieved through moving averages, followed by feature 
scaling and normalization methods. These steps are crucial to align the 
dataset with the unique capabilities of the LSTM model. The total dataset 
has a R squared (R2) value 0.23517 and a mean squared error (MSE) 
value 92.1839, according to the simulated findings. These metrics affirm 
the robust performance of the LSTM model, suggesting a high probability 
of accurate rainfall predictions, particularly in non-linear and complex 
scenarios. Decision-makers in flood predictions, agriculture, and water 
resource management will find the knowledge gathered from this study to 
be useful. They emphasize how crucial it is to use cutting-edge techniques 
like LSTM to increase rainfall forecast accuracy and guide strategic planning 
in associated industries.
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Introduction 
Accurate rainfall prediction is of critical importance 
in various fields due to its substantial impact 
on agriculture, water resource management, 
environmental planning, and disaster alertness. 
While classic statistical algorithms like regression 
modeling are commonly employed in regions with 
consistent climatic conditions, they often struggle to 
effectively capture non-linear and complex rainfall 
patterns. Recurrent Neural Networks of the Long 
Short-Term Memory have shown to be a particularly 
promising tool for rainfall prediction. LSTM networks 
address challenges like the vanishing gradient 
problem, thereby enabling the modeling of long-
term dependencies in sequential data. This study 
contributes to the ongoing advancements in 
rainfall prediction methodologies by focusing on 
LSTM networks, meeting the growing demand 
for precision and reliability in weather forecasting 
applications. Research has demonstrated that 
traditional statistical models like regression, multiple 
regression, ARIMA, and linear regression can in fact 
be effective in predicting rainfall patterns, especially 
in regions with consistent climatic conditions. While 
traditional statistical algorithms and ML techniques 
have been extensively studied in the literature for 
rainfall prediction.1,2 Classic statistical algorithms 
face limitations when dealing with non-linear and 
complex rainfall patterns. This is where methods for 
ML are useful. In non-linear and complex systems, 
ML methods such as ANNs, SVMs, and decision 
trees have proven to be more effective in forecasting 
rainfall patterns.3,4 Among the machine learning 
algorithms, RNNs and their variants, such as LSTM 
networks, have gained significant attention in rainfall 
prediction due to their ability to handle temporal 
dependencies and non-linearity.5,6 Prediction relies 
heavily on back-propagation as it allows neurons 
to make predictions by storing the weights that are 
appropriate for a certain input range. Such a scenario 
is used to estimate monthly rainfall for Indonesia's 
Kalimantan area using a Back-propagating Neural 
Network (BPNN) with the lowest possible error.7 
Local predictions depend on historical data, present 
weather conditions, and mathematical models, 
whereas global predictions rely on satellite data, 
ground-based observations, and climate models. 
The most effective method varies based on the 
application and available data. Although machine 
learning and artificial intelligence techniques have 
the potential to improve prediction accuracy, they 

require large amounts of training data and can be 
challenging to interpret. Advances in technology 
and data collection will continue to drive progress 
in this field.8 These studies provide a diverse range 
of approaches for predicting rainfall using machine 
learning techniques. 

Researcher Mishra et al.9 focus on the creation 
and evaluation of ANN models for time-series data-
based rainfall prediction, which is a commonly used 
approach for analyzing rainfall patterns. Miao et al.10 

apply LSTM for predicting short-term fog based on 
weather conditions, construction and study of ANN 
models for forecasting rainfall based on time-series 
data, which can be useful in mitigating the risks 
associated with reduced visibility during foggy 
weather conditions. Finally, Endalie.11 et al propose 
a method for heavy rainfall prediction using the Gini 
index in decision trees, which provides a simple 
and effective approach for predicting heavy rainfall 
events. Overall, these studies highlight the potential 
of machine learning techniques for improving rainfall 
prediction accuracy; It has a number of uses, 
including managing water resources, managing 
floods, and farming.

The LSTM architecture, which was pioneered by 
Hochreiter et al.,12 is widely utilized due to it's able to 
arbitrarily retain or forget data, but it has weaknesses 
such as vanishing gradient problems as well as 
elevated computational costs.

In summary, while classic statistical algorithms 
are suitable for predicting rainfall patterns in 
regions with consistent climates, machine learning 
algorithms, particularly LSTM networks, offer a 
promising avenue for improving accuracy in non-
linear and complex systems. The ongoing efforts 
to enhance the performance of RNNs underscore 
the importance of LSTM and attention mechanisms 
in the field of machine learning, showcasing their 
potential across a wide range of tasks. 

Methodology 
Understanding Recurrent Neural Networks (RNN): 
RNNs are dynamic systems featuring a recurrent 
hidden unit designed to preserve information about 
past elements in a sequence.13 At each time step t, 
the hidden state ht is determined using the current 
input xt and the preceding hidden state ht-1. The 
transformation from input sequences to output 
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sequences involves the utilization of non-linear 
activation functions and adjustable parameters. 
Despite their effectiveness, RNNs encounter 

challenges with the vanishing/exploding gradient 
problem during the training process.14-16

Fig.1: LSTM Architecture

Long Short-Term Memory Architecture 
The LSTM aims to overcome the vanishing gradient 
issue by introducing a specialized memory cell. This 
cell functions as a gated leaky neuron, featuring a 
self-connection regulated by another unit responsible 
for determining when to clear the memory. As shown 
in figure 1 within the LSTM unit, various gates are 
incorporated, including the forget gate, tanh layer, 
input gate, and output gate utilized for computing 
candidate values.

The candidate vector C, the cell state Ct, the output 
gate Ot, the forget gate ft, and the input gate i , are 
all involved. The forget, input, and output gates are 
represented by the letters ft, it, and Ot, respectively, 
in the preceding picture. The gates are based on a 
straightforward instinct:

ft = σ (Wf · [ht-1, Xt] + bf)	 ...(1)

it = σ (Wf · [ht-1, Xt] +bi)	 ...(2)

Ot = σ (Wo· [ht-1, Xt] + bo)	 ...(3)

Ct =σ (Wf · [ht-1, Xt] +bf)	 ...(4)

Next, the internal state of the cell is calculated as:

Ct = i(t) · C’t + ft·. Ct -1	 ...(5)

The internal cell state is then filtered out of the cell's 
final output, or ht.

ht = Ot × tanh Ct	 ...(5)

•	 The forget gate determines which information 
from the cell state should be discarded, based 
on the input and previous hidden state.

•	 The forget and input gates are then used to 
update the cell state, and the output gate 
determines which data is sent to the new 
hidden state. 

•	 The forget and input gates are then used to 
update the cell state, and the output gate 
determines which data is sent to the new hidden 
state.17-20

Training and Parameterization

•	 LSTM units are trained using backpropagation 
through time (BPTT) with gradient descent 
optimization.

•	 Parameters such as weights (W), biases (b), 
and gate activation functions are optimized 
during training to minimize prediction errors.

•	 Hyperparameters, such as the quantity of LSTM 
layers, hidden elements, and learning rates, are 
adjusted by the application of methods like as 
grid search and random search.

By following this methodology, LSTM networks 
enable accurate and reliable rainfall predictions, 
which have various applications in agriculture, water 
resource management, and disaster preparedness.



188SARWADE et al., Curr. World Environ., Vol. 19(1) 185-195 (2024)

Location of Study
The Kolhapur district has been selected as the focal 
point for data collection and analysis. The data were 
sourced from the Zonal Agricultural Research Station 
(ZARS), located in Shenda Park, Kolhapur.21,22 
The geographical coordinates for this location are 
16.673 latitude and 74.237 longitudes as shown 

in figure 2. Rainfall, temperature, and humidity 
data are used for prediction, with preprocessing 
techniques like cleaning and normalization applied. 
Rainfall, relative humidity I and II, minimum and 
maximum temperatures (tmax and tmin) are examples 
of parameters.

Fig. 2: Rainfall data from the Zonal Agriculture Research Station, Shenda Park, Kolhapur21

Data Pre-Processing
Data preprocessing for meteorological data involves 
several steps, including data cleaning, which entails 
identifying and rectifying data errors and missing 
values. This step is crucial for transforming and 
normalizing the data, facilitating easier analysis and 
enhancing result accuracy. The dataset used in this 
study spans from January 2015 to December 2021.

Initially, the data is plotted to detect any empty 
or abnormal data points. For instance, Figure 
3.A illustrates the maximum temperature (Tmax) 
from January 2015 to December 2021, revealing 
anomalies on March 2 and 10, 2017, with recorded 
temperatures of 353.3°C and 335.2°C, respectively. 
These outliers are corrected using the moving 
average method. Similarly, Figure 3.B depicts the 

minimum temperature (Tmin) data, highlighting an 
unrealistic reading of 50.4°C on July 24, 2016, which 
is also rectified using the moving average method. 
Additionally, Figure 4 displays Tmax and Tmin 
plotted together, uncovering unusual temperature 
fluctuations on December 17, 2018, which are 
adjusted accordingly. Figures 3.C and 3.D present 
relative humidity datasets, which do not require 
cleaning and proceed to the subsequent stage of 
data preprocessing.

Feature Scaling
Feature scaling is a critical preprocessing step in 
deep learning, aiming to normalize the range of 
features. The two primary techniques are Min-Max 
scaling (Normalization) and Standardization. While 
Standardization is more robust to outliers, Min-Max 
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scaling preserves the original data distribution. 
For long-range weather data spanning years, 
normalization is preferred to maintain the distribution 

form.23-26 The graphs illustrating the dataset before 
and after normalization are presented in Figure 6 
(a, b).

Fig. 3: Dataset plotted for minimum and maximum time period, humidity

Fig. 4: Data-set plotted together and, in the form, as it is received for 
Tmax and Tmin over the total time period
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LSTM Training and Analysis Methodology 
This section outlines the workflow of LSTM module 
structures for rainfall prediction, detailing both 
implementation and validation approaches. Figure 
7 illustrates the strategy employed to implement 
LSTM for rainfall prediction and the processing 
flow involved. Before LSTM implementation, data 
preprocessing is conducted, which includes data 
correction using moving averages and feature 
scaling using normalization methods.27 After 
preprocessing the data, the following strategy is 
implemented to develop the LSTM module for rainfall 
prediction.

LSTM: Training and Evaluation 
The LSTM module is constructed with 400 hidden 
layers and trained over 200 epochs, resulting in 
a total of 6200 iterations with 31 iterations per 
epoch. Rainfall predictions are generated using 
five meteorological datasets following the training 
process. For training, 90% of the dataset is utilized, 
while three distinct testing scenarios are employed: 
self-testing (90%), separate testing (10%), and full 
dataset testing (100%). These testing scenarios 
allow for a thorough assessment of the LSTM 
model's efficiency and provide insights into how well 
it predicts rainfall under various settings.28-30

Fig. 5: Data-set plotted together after adjusting the incorrect readings 
for Tmax and Tmin over the total time period

Fig. 6: Dataset (a) before normalization (b) after normalization
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Fig. 7: Processing flow for the prediction of rainfall using LSTM

Result And Discussion 
The study assesses the LSTM model's performance 
in rainfall prediction. Figure 8(a) illustrates rank 
correlation computation for each dataset segment, 
reflecting the model's predictive capability. The 
graphs present target and output values for training, 
self-testing, separate testing, and the entire datasets. 
LSTM achieves a rank correlation of 0.6284 using 
90% of the training data, indicating acceptable 
performance. Further analyses validate LSTM's 
commendable prediction accuracy. Figure 8(b) 
showcases rank correlation for test data, providing 
additional support for LSTM's effectiveness. 
Extending the analysis to all available data, Figure 
8(c) demonstrates LSTM's overall superiority 
in rainfall prediction, with potential for further 
enhancement through larger meteorological 
datasets. 

Evaluation Matrices 
For LSTM, to evaluate prediction ability of the 
modules, for evaluation matrices is computed. Table 
I shows the values computed for RMS, NRMSE 

and MSE for all the portions of datasets for LSTM 
module.   

Analysis of Evaluation Matrices 
In this work, the assessment metrics of the LSTM 
module were examined in detail. For the training, 
testing, and total datasets, MSE, RMSE, and 
NRMSE were calculated. The results indicated 
that the LSTM module yielded an MSE of 92.183 
and 120.423 for the 90% training dataset and the 
entire dataset, respectively. However, for the testing 
dataset, the MSE increased significantly to 374.246 
due to the presence of outlier values. Similarly, the 
RMSE values exhibited a corresponding increase 
in error for the testing dataset. It's important to 
acknowledge that outlier values within the dataset 
can greatly influence and amplify the error values.

Regression Model-based Analysis
The regression analysis of the LSTM module 
demonstrates an acceptable R-squared value of 
approximately 0.23517 for both the training and 
entire datasets (Fig. 9a, c). However, a decrease 
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in the R-squared value is noticeable for the testing 
dataset (Fig. 9b), suggesting poor performance 
primarily due to outlier points. While the model 
exhibits strong performance on the training and 
entire datasets, there is room for improvement 

specifically on the testing dataset. Furthermore, it is 
imperative to consider the complexity of the model 
to prevent overfitting and ensure better performance 
on testing data.

Fig. 8: Rank correlation computed for LSTM over (a) Train data (b) Test data (c) All data
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Table 1: Performance Matrices computed using LSTM 
module over different portions of data-set

ANN	 Data set portion	                              Predicted Rainfall (mm)

		  MSE	 RMSE	 NRMSE	 R2

LSTM	 90% training data	 92.1839	 9.6012	 2.8115	 0.24496
	 10% testing data	 374.246	 19.3454	 2.7499	 0.17093
	 All dataset	 120.423	 10.9738	 2.9051	 0.23517

Fig. 9: R2 computed from regression for LSTM over (a) Train dataset 
(b) Test dataset (c) All dataset
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Conclusion
This study advances rainfall prediction methodologies 
using the LSTM method. The models, which 
incorporate rainfall, temperature, and humidity, 
demonstrate robust performance in predicting 
rainfall probabilities. Simulated results indicate a 
high probability of accurate predictions, particularly 
in nonlinear and complex scenarios. The validity 
of these results was established through rigorous 
testing, revealing a strong rank correlation of 
0.58264 for test data and 0.71147 for all data, 
showcasing the effectiveness of the LSTM-based 
approach in handling temporal and nonlinear data.
Furthermore, the simulated outcomes show 
encouraging results, with an MSE of 92.1839 and an 
R2 value of 0.24496 throughout the whole dataset. 
Despite the presence of outlier points in the dataset, 
our model exhibits a prediction accuracy of 71.147%, 
as evidenced by a rank correlation of 0.71147 for 
all data.
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